\(\int \cos (e+f x) (a+a \sin (e+f x))^m (c+d \sin (e+f x))^n \, dx\) [912]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 88 \[ \int \cos (e+f x) (a+a \sin (e+f x))^m (c+d \sin (e+f x))^n \, dx=\frac {\operatorname {Hypergeometric2F1}\left (1+m,-n,2+m,-\frac {d (1+\sin (e+f x))}{c-d}\right ) (a+a \sin (e+f x))^{1+m} (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c-d}\right )^{-n}}{a f (1+m)} \]

[Out]

hypergeom([-n, 1+m],[2+m],-d*(1+sin(f*x+e))/(c-d))*(a+a*sin(f*x+e))^(1+m)*(c+d*sin(f*x+e))^n/a/f/(1+m)/(((c+d*
sin(f*x+e))/(c-d))^n)

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {2912, 72, 71} \[ \int \cos (e+f x) (a+a \sin (e+f x))^m (c+d \sin (e+f x))^n \, dx=\frac {(a \sin (e+f x)+a)^{m+1} (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c-d}\right )^{-n} \operatorname {Hypergeometric2F1}\left (m+1,-n,m+2,-\frac {d (\sin (e+f x)+1)}{c-d}\right )}{a f (m+1)} \]

[In]

Int[Cos[e + f*x]*(a + a*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n,x]

[Out]

(Hypergeometric2F1[1 + m, -n, 2 + m, -((d*(1 + Sin[e + f*x]))/(c - d))]*(a + a*Sin[e + f*x])^(1 + m)*(c + d*Si
n[e + f*x])^n)/(a*f*(1 + m)*((c + d*Sin[e + f*x])/(c - d))^n)

Rule 71

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c
 - a*d))^n))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-d/(b*c - a*d), 0]))

Rule 72

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]), Int[(a + b*x)^m*Simp[b*(c/(b*c - a*d)) + b*d*(x/(b*c -
a*d)), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 2912

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d/b)*x)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int (a+x)^m \left (c+\frac {d x}{a}\right )^n \, dx,x,a \sin (e+f x)\right )}{a f} \\ & = \frac {\left ((c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c-d}\right )^{-n}\right ) \text {Subst}\left (\int (a+x)^m \left (\frac {c}{c-d}+\frac {d x}{a (c-d)}\right )^n \, dx,x,a \sin (e+f x)\right )}{a f} \\ & = \frac {\operatorname {Hypergeometric2F1}\left (1+m,-n,2+m,-\frac {d (1+\sin (e+f x))}{c-d}\right ) (a+a \sin (e+f x))^{1+m} (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c-d}\right )^{-n}}{a f (1+m)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 88, normalized size of antiderivative = 1.00 \[ \int \cos (e+f x) (a+a \sin (e+f x))^m (c+d \sin (e+f x))^n \, dx=\frac {\operatorname {Hypergeometric2F1}\left (1+m,-n,2+m,-\frac {d (1+\sin (e+f x))}{c-d}\right ) (a+a \sin (e+f x))^{1+m} (c+d \sin (e+f x))^n \left (\frac {c+d \sin (e+f x)}{c-d}\right )^{-n}}{a f (1+m)} \]

[In]

Integrate[Cos[e + f*x]*(a + a*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n,x]

[Out]

(Hypergeometric2F1[1 + m, -n, 2 + m, -((d*(1 + Sin[e + f*x]))/(c - d))]*(a + a*Sin[e + f*x])^(1 + m)*(c + d*Si
n[e + f*x])^n)/(a*f*(1 + m)*((c + d*Sin[e + f*x])/(c - d))^n)

Maple [F]

\[\int \cos \left (f x +e \right ) \left (a +a \sin \left (f x +e \right )\right )^{m} \left (c +d \sin \left (f x +e \right )\right )^{n}d x\]

[In]

int(cos(f*x+e)*(a+a*sin(f*x+e))^m*(c+d*sin(f*x+e))^n,x)

[Out]

int(cos(f*x+e)*(a+a*sin(f*x+e))^m*(c+d*sin(f*x+e))^n,x)

Fricas [F]

\[ \int \cos (e+f x) (a+a \sin (e+f x))^m (c+d \sin (e+f x))^n \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{m} {\left (d \sin \left (f x + e\right ) + c\right )}^{n} \cos \left (f x + e\right ) \,d x } \]

[In]

integrate(cos(f*x+e)*(a+a*sin(f*x+e))^m*(c+d*sin(f*x+e))^n,x, algorithm="fricas")

[Out]

integral((a*sin(f*x + e) + a)^m*(d*sin(f*x + e) + c)^n*cos(f*x + e), x)

Sympy [F]

\[ \int \cos (e+f x) (a+a \sin (e+f x))^m (c+d \sin (e+f x))^n \, dx=\int \left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{m} \left (c + d \sin {\left (e + f x \right )}\right )^{n} \cos {\left (e + f x \right )}\, dx \]

[In]

integrate(cos(f*x+e)*(a+a*sin(f*x+e))**m*(c+d*sin(f*x+e))**n,x)

[Out]

Integral((a*(sin(e + f*x) + 1))**m*(c + d*sin(e + f*x))**n*cos(e + f*x), x)

Maxima [F]

\[ \int \cos (e+f x) (a+a \sin (e+f x))^m (c+d \sin (e+f x))^n \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{m} {\left (d \sin \left (f x + e\right ) + c\right )}^{n} \cos \left (f x + e\right ) \,d x } \]

[In]

integrate(cos(f*x+e)*(a+a*sin(f*x+e))^m*(c+d*sin(f*x+e))^n,x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^m*(d*sin(f*x + e) + c)^n*cos(f*x + e), x)

Giac [F]

\[ \int \cos (e+f x) (a+a \sin (e+f x))^m (c+d \sin (e+f x))^n \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{m} {\left (d \sin \left (f x + e\right ) + c\right )}^{n} \cos \left (f x + e\right ) \,d x } \]

[In]

integrate(cos(f*x+e)*(a+a*sin(f*x+e))^m*(c+d*sin(f*x+e))^n,x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)^m*(d*sin(f*x + e) + c)^n*cos(f*x + e), x)

Mupad [F(-1)]

Timed out. \[ \int \cos (e+f x) (a+a \sin (e+f x))^m (c+d \sin (e+f x))^n \, dx=\int \cos \left (e+f\,x\right )\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^m\,{\left (c+d\,\sin \left (e+f\,x\right )\right )}^n \,d x \]

[In]

int(cos(e + f*x)*(a + a*sin(e + f*x))^m*(c + d*sin(e + f*x))^n,x)

[Out]

int(cos(e + f*x)*(a + a*sin(e + f*x))^m*(c + d*sin(e + f*x))^n, x)